79 research outputs found

    Nonhermitian transport effects in coupled-resonator optical waveguides

    Get PDF
    Coupled-resonator optical waveguides (CROWs) are known to have interesting and useful dispersion properties. Here, we study the transport in these waveguides in the general case where each resonator is open and asymmetric, i.e., is leaky and possesses no mirror-reflection symmetry. Each individual resonator then exhibits asymmetric backscattering between clockwise and counterclockwise propagating waves, which in combination with the losses induces non-orthogonal eigenmodes. In a chain of such resonators, the coupling between the resonators induces an additional source of non-hermiticity, and a complex band structure arises. We show that in this situation the group velocity of wave packets differs from the velocity associated with the probability density flux, with the difference arising from a non-hermitian correction to the Hellmann-Feynman theorem. Exploring these features numerically in a realistic scenario, we find that the complex band structure comprises almost-real branches and complex branches, which are joined by exceptional points, i.e., nonhermitian degeneracies at which not only the frequencies and decay rates coalesce but also the eigenmodes themselves. The non-hermitian corrections to the group velocity are largest in the regions around the exceptional points.Comment: 11 pages, 9 figure

    Revisiting the hierarchical construction of higher-order exceptional points

    Full text link
    Higher-order exceptional points in the spectrum of non-Hermitian Hamiltonians describing open quantum or wave systems have a variety of potential applications in particular in optics and photonics. However, the experimental realization is notoriously difficult. Recently, Q. Zhong et al. [Phys. Rev. Lett. 125, 203602 (2020)] have introduced a robust construction where a unidirectional coupling of two subsystems having exceptional points of the same order leads generically to a single exceptional point of twice the order. Here, we investigate this scheme in a different manner by exploiting the nilpotency of the traceless part of the involved Hamiltonians. We generalize the scheme and derive a simple formula for the spectral response strength of the composite system hosting a higher-order exceptional point. Its relation to the spectral response strengths of the subsystems is discussed. Moreover, we investigate nongeneric perturbations. The results are illustrated with an example.Comment: 6 pages, 2 figure

    Rotating optical microcavities with broken chiral symmetry

    Get PDF
    We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.Comment: 5 pages, 5 figure

    Nonlinear dynamical tunneling of optical whispering gallery modes in the presence of a Kerr nonlinearity

    Full text link
    The effect of a Kerr nonlinearity on dynamical tunneling is studied, using coupled whispering gallery modes in an optical microcavity. The model system that we have chosen is the 'add-drop filter', which comprises an optical microcavity and two waveguide coupled to the cavity. Due to the evanescent field's scattering on the waveguide, the whispering gallery modes in the microcavity form doublets, which manifest themselves as splittings in the spectrum. As these doublets can be regarded as a spectral feature of dynamical tunneling between two different dynamical states with a spatial overlap, the effect of a Kerr nonlinearity on the doublets is numerically investigated in the more general context of the relationship between cubic nonlinearity and dynamical tunneling. Within the numerical realization of the model system, it is observed that the doublets shows a bistable transition in its transmission curve as the Kerr-nonlinearity in the cavity is increased. At the same time, one rotational mode gets dominant over the other one in the transmission, since the two states in the doublet have uneven linewidths. By using coupled mode theory, the underlying mode dynamics of the phenomena is theoretically modelled and clarified.Comment: 7 pages, 5 figure

    Unidirectional light emission from high-Q modes in optical microcavities

    Full text link
    We introduce a new scheme to design optical microcavities supporting high-Q modes with unidirectional light emission. This is achieved by coupling a low-Q mode with unidirectional emission to a high-Q mode. The coupling is due to enhanced dynamical tunneling near an avoided resonance crossing. Numerical results for a microdisk with a suitably positioned air hole demonstrate the feasibility and the potential of this concept.Comment: 4 pages, 6 figures (in reduced resolution
    • …
    corecore